/*********************************************************************** * Copyright (c) Pieter Wuille, Gregory Maxwell, Peter Dettman * * Distributed under the MIT software license, see the accompanying * * file COPYING or https://www.opensource.org/licenses/mit-license.php.* ***********************************************************************/ #ifndef SECP256K1_ECMULT_GEN_IMPL_H #define SECP256K1_ECMULT_GEN_IMPL_H #include "util.h" #include "scalar.h" #include "group.h" #include "ecmult_gen.h" #include "hash_impl.h" #include "precomputed_ecmult_gen.h" static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx) { secp256k1_ecmult_gen_blind(ctx, NULL); ctx->built = 1; } static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) { return ctx->built; } static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) { ctx->built = 0; secp256k1_scalar_clear(&ctx->scalar_offset); secp256k1_ge_clear(&ctx->ge_offset); secp256k1_fe_clear(&ctx->proj_blind); } /* Compute the scalar (2^COMB_BITS - 1) / 2, the difference between the gn argument to * secp256k1_ecmult_gen, and the scalar whose encoding the table lookup bits are drawn * from (before applying blinding). */ static void secp256k1_ecmult_gen_scalar_diff(secp256k1_scalar* diff) { int i; /* Compute scalar -1/2. */ secp256k1_scalar neghalf; secp256k1_scalar_half(&neghalf, &secp256k1_scalar_one); secp256k1_scalar_negate(&neghalf, &neghalf); /* Compute offset = 2^(COMB_BITS - 1). */ *diff = secp256k1_scalar_one; for (i = 0; i < COMB_BITS - 1; ++i) { secp256k1_scalar_add(diff, diff, diff); } /* The result is the sum 2^(COMB_BITS - 1) + (-1/2). */ secp256k1_scalar_add(diff, diff, &neghalf); } static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) { uint32_t comb_off; secp256k1_ge add; secp256k1_fe neg; secp256k1_ge_storage adds; secp256k1_scalar d; /* Array of uint32_t values large enough to store COMB_BITS bits. Only the bottom * 8 are ever nonzero, but having the zero padding at the end if COMB_BITS>256 * avoids the need to deal with out-of-bounds reads from a scalar. */ uint32_t recoded[(COMB_BITS + 31) >> 5] = {0}; int first = 1, i; memset(&adds, 0, sizeof(adds)); /* We want to compute R = gn*G. * * To blind the scalar used in the computation, we rewrite this to be * R = (gn - b)*G + b*G, with a blinding value b determined by the context. * * The multiplication (gn-b)*G will be performed using a signed-digit multi-comb (see Section * 3.3 of "Fast and compact elliptic-curve cryptography" by Mike Hamburg, * https://eprint.iacr.org/2012/309). * * Let comb(s, P) = sum((2*s[i]-1)*2^i*P for i=0..COMB_BITS-1), where s[i] is the i'th bit of * the binary representation of scalar s. So the s[i] values determine whether -2^i*P (s[i]=0) * or +2^i*P (s[i]=1) are added together. COMB_BITS is at least 256, so all bits of s are * covered. By manipulating: * * comb(s, P) = sum((2*s[i]-1)*2^i*P for i=0..COMB_BITS-1) * <=> comb(s, P) = sum((2*s[i]-1)*2^i for i=0..COMB_BITS-1) * P * <=> comb(s, P) = (2*sum(s[i]*2^i for i=0..COMB_BITS-1) - sum(2^i for i=0..COMB_BITS-1)) * P * <=> comb(s, P) = (2*s - (2^COMB_BITS - 1)) * P * * If we wanted to compute (gn-b)*G as comb(s, G), it would need to hold that * * (gn - b) * G = (2*s - (2^COMB_BITS - 1)) * G * <=> s = (gn - b + (2^COMB_BITS - 1))/2 (mod order) * * We use an alternative here that avoids the modular division by two: instead we compute * (gn-b)*G as comb(d, G/2). For that to hold it must be the case that * * (gn - b) * G = (2*d - (2^COMB_BITS - 1)) * (G/2) * <=> d = gn - b + (2^COMB_BITS - 1)/2 (mod order) * * Adding precomputation, our final equations become: * * ctx->scalar_offset = (2^COMB_BITS - 1)/2 - b (mod order) * ctx->ge_offset = b*G * d = gn + ctx->scalar_offset (mod order) * R = comb(d, G/2) + ctx->ge_offset * * comb(d, G/2) function is then computed by summing + or - 2^(i-1)*G, for i=0..COMB_BITS-1, * depending on the value of the bits d[i] of the binary representation of scalar d. */ /* Compute the scalar d = (gn + ctx->scalar_offset). */ secp256k1_scalar_add(&d, &ctx->scalar_offset, gn); /* Convert to recoded array. */ for (i = 0; i < 8 && i < ((COMB_BITS + 31) >> 5); ++i) { recoded[i] = secp256k1_scalar_get_bits_limb32(&d, 32 * i, 32); } secp256k1_scalar_clear(&d); /* In secp256k1_ecmult_gen_prec_table we have precomputed sums of the * (2*d[i]-1) * 2^(i-1) * G points, for various combinations of i positions. * We rewrite our equation in terms of these table entries. * * Let mask(b) = sum(2^((b*COMB_TEETH + t)*COMB_SPACING) for t=0..COMB_TEETH-1), * with b ranging from 0 to COMB_BLOCKS-1. So for example with COMB_BLOCKS=11, * COMB_TEETH=6, COMB_SPACING=4, we would have: * mask(0) = 2^0 + 2^4 + 2^8 + 2^12 + 2^16 + 2^20, * mask(1) = 2^24 + 2^28 + 2^32 + 2^36 + 2^40 + 2^44, * mask(2) = 2^48 + 2^52 + 2^56 + 2^60 + 2^64 + 2^68, * ... * mask(10) = 2^240 + 2^244 + 2^248 + 2^252 + 2^256 + 2^260 * * We will split up the bits d[i] using these masks. Specifically, each mask is * used COMB_SPACING times, with different shifts: * * d = (d & mask(0)<<0) + (d & mask(1)<<0) + ... + (d & mask(COMB_BLOCKS-1)<<0) + * (d & mask(0)<<1) + (d & mask(1)<<1) + ... + (d & mask(COMB_BLOCKS-1)<<1) + * ... * (d & mask(0)<<(COMB_SPACING-1)) + ... * * Now define table(b, m) = (m - mask(b)/2) * G, and we will precompute these values for * b=0..COMB_BLOCKS-1, and for all values m which (d & mask(b)) can take (so m can take on * 2^COMB_TEETH distinct values). * * If m=(d & mask(b)), then table(b, m) is the sum of 2^i * (2*d[i]-1) * G/2, with i * iterating over the set bits in mask(b). In our example, table(2, 2^48 + 2^56 + 2^68) * would equal (2^48 - 2^52 + 2^56 - 2^60 - 2^64 + 2^68) * G/2. * * With that, we can rewrite comb(d, G/2) as: * * 2^0 * (table(0, d>>0 & mask(0)) + ... + table(COMB_BLOCKS-1, d>>0 & mask(COMP_BLOCKS-1))) * + 2^1 * (table(0, d>>1 & mask(0)) + ... + table(COMB_BLOCKS-1, d>>1 & mask(COMP_BLOCKS-1))) * + 2^2 * (table(0, d>>2 & mask(0)) + ... + table(COMB_BLOCKS-1, d>>2 & mask(COMP_BLOCKS-1))) * + ... * + 2^(COMB_SPACING-1) * (table(0, d>>(COMB_SPACING-1) & mask(0)) + ...) * * Or more generically as * * sum(2^i * sum(table(b, d>>i & mask(b)), b=0..COMB_BLOCKS-1), i=0..COMB_SPACING-1) * * This is implemented using an outer loop that runs in reverse order over the lines of this * equation, which in each iteration runs an inner loop that adds the terms of that line and * then doubles the result before proceeding to the next line. * * In pseudocode: * c = infinity * for comb_off in range(COMB_SPACING - 1, -1, -1): * for block in range(COMB_BLOCKS): * c += table(block, (d >> comb_off) & mask(block)) * if comb_off > 0: * c = 2*c * return c * * This computes c = comb(d, G/2), and thus finally R = c + ctx->ge_offset. Note that it would * be possible to apply an initial offset instead of a final offset (moving ge_offset to take * the place of infinity above), but the chosen approach allows using (in a future improvement) * an incomplete addition formula for most of the multiplication. * * The last question is how to implement the table(b, m) function. For any value of b, * m=(d & mask(b)) can only take on at most 2^COMB_TEETH possible values (the last one may have * fewer as there mask(b) may exceed the curve order). So we could create COMB_BLOCK tables * which contain a value for each such m value. * * Now note that if m=(d & mask(b)), then flipping the relevant bits of m results in negating * the result of table(b, m). This is because table(b,m XOR mask(b)) = table(b, mask(b) - m) = * (mask(b) - m - mask(b)/2)*G = (-m + mask(b)/2)*G = -(m - mask(b)/2)*G = -table(b, m). * Because of this it suffices to only store the first half of the m values for every b. If an * entry from the second half is needed, we look up its bit-flipped version instead, and negate * it. * * secp256k1_ecmult_gen_prec_table[b][index] stores the table(b, m) entries. Index * is the relevant mask(b) bits of m packed together without gaps. */ /* Outer loop: iterate over comb_off from COMB_SPACING - 1 down to 0. */ comb_off = COMB_SPACING - 1; while (1) { uint32_t block; uint32_t bit_pos = comb_off; /* Inner loop: for each block, add table entries to the result. */ for (block = 0; block < COMB_BLOCKS; ++block) { /* Gather the mask(block)-selected bits of d into bits. They're packed: * bits[tooth] = d[(block*COMB_TEETH + tooth)*COMB_SPACING + comb_off]. */ uint32_t bits = 0, sign, abs, index, tooth; /* Instead of reading individual bits here to construct the bits variable, * build up the result by xoring rotated reads together. In every iteration, * one additional bit is made correct, starting at the bottom. The bits * above that contain junk. This reduces leakage by avoiding computations * on variables that can have only a low number of possible values (e.g., * just two values when reading a single bit into a variable.) See: * https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-alam.pdf */ for (tooth = 0; tooth < COMB_TEETH; ++tooth) { /* Construct bitdata s.t. the bottom bit is the bit we'd like to read. * * We could just set bitdata = recoded[bit_pos >> 5] >> (bit_pos & 0x1f) * but this would simply discard the bits that fall off at the bottom, * and thus, for example, bitdata could still have only two values if we * happen to shift by exactly 31 positions. We use a rotation instead, * which ensures that bitdata doesn't loose entropy. This relies on the * rotation being atomic, i.e., the compiler emitting an actual rot * instruction. */ uint32_t bitdata = secp256k1_rotr32(recoded[bit_pos >> 5], bit_pos & 0x1f); /* Clear the bit at position tooth, but sssh, don't tell clang. */ uint32_t volatile vmask = ~(1 << tooth); bits &= vmask; /* Write the bit into position tooth (and junk into higher bits). */ bits ^= bitdata << tooth; bit_pos += COMB_SPACING; } /* If the top bit of bits is 1, flip them all (corresponding to looking up * the negated table value), and remember to negate the result in sign. */ sign = (bits >> (COMB_TEETH - 1)) & 1; abs = (bits ^ -sign) & (COMB_POINTS - 1); VERIFY_CHECK(sign == 0 || sign == 1); VERIFY_CHECK(abs < COMB_POINTS); /** This uses a conditional move to avoid any secret data in array indexes. * _Any_ use of secret indexes has been demonstrated to result in timing * sidechannels, even when the cache-line access patterns are uniform. * See also: * "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe * (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and * "Cache Attacks and Countermeasures: the Case of AES", RSA 2006, * by Dag Arne Osvik, Adi Shamir, and Eran Tromer * (https://www.tau.ac.il/~tromer/papers/cache.pdf) */ for (index = 0; index < COMB_POINTS; ++index) { secp256k1_ge_storage_cmov(&adds, &secp256k1_ecmult_gen_prec_table[block][index], index == abs); } /* Set add=adds or add=-adds, in constant time, based on sign. */ secp256k1_ge_from_storage(&add, &adds); secp256k1_fe_negate(&neg, &add.y, 1); secp256k1_fe_cmov(&add.y, &neg, sign); /* Add the looked up and conditionally negated value to r. */ if (EXPECT(first, 0)) { /* If this is the first table lookup, we can skip addition. */ secp256k1_gej_set_ge(r, &add); /* Give the entry a random Z coordinate to blind intermediary results. */ secp256k1_gej_rescale(r, &ctx->proj_blind); first = 0; } else { secp256k1_gej_add_ge(r, r, &add); } } /* Double the result, except in the last iteration. */ if (comb_off-- == 0) break; secp256k1_gej_double(r, r); } /* Correct for the scalar_offset added at the start (ge_offset = b*G, while b was * subtracted from the input scalar gn). */ secp256k1_gej_add_ge(r, r, &ctx->ge_offset); /* Cleanup. */ secp256k1_fe_clear(&neg); secp256k1_ge_clear(&add); secp256k1_memclear(&adds, sizeof(adds)); secp256k1_memclear(&recoded, sizeof(recoded)); } /* Setup blinding values for secp256k1_ecmult_gen. */ static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) { secp256k1_scalar b; secp256k1_scalar diff; secp256k1_gej gb; secp256k1_fe f; unsigned char nonce32[32]; secp256k1_rfc6979_hmac_sha256 rng; unsigned char keydata[64]; /* Compute the (2^COMB_BITS - 1)/2 term once. */ secp256k1_ecmult_gen_scalar_diff(&diff); if (seed32 == NULL) { /* When seed is NULL, reset the final point and blinding value. */ secp256k1_ge_neg(&ctx->ge_offset, &secp256k1_ge_const_g); secp256k1_scalar_add(&ctx->scalar_offset, &secp256k1_scalar_one, &diff); ctx->proj_blind = secp256k1_fe_one; return; } /* The prior blinding value (if not reset) is chained forward by including it in the hash. */ secp256k1_scalar_get_b32(keydata, &ctx->scalar_offset); /** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data, * and guards against weak or adversarial seeds. This is a simpler and safer interface than * asking the caller for blinding values directly and expecting them to retry on failure. */ VERIFY_CHECK(seed32 != NULL); memcpy(keydata + 32, seed32, 32); secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, 64); secp256k1_memclear(keydata, sizeof(keydata)); /* Compute projective blinding factor (cannot be 0). */ secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); secp256k1_fe_set_b32_mod(&f, nonce32); secp256k1_fe_cmov(&f, &secp256k1_fe_one, secp256k1_fe_normalizes_to_zero(&f)); ctx->proj_blind = f; /* For a random blinding value b, set scalar_offset=diff-b, ge_offset=bG */ secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32); secp256k1_scalar_set_b32(&b, nonce32, NULL); /* The blinding value cannot be zero, as that would mean ge_offset = infinity, * which secp256k1_gej_add_ge cannot handle. */ secp256k1_scalar_cmov(&b, &secp256k1_scalar_one, secp256k1_scalar_is_zero(&b)); secp256k1_rfc6979_hmac_sha256_finalize(&rng); secp256k1_ecmult_gen(ctx, &gb, &b); secp256k1_scalar_negate(&b, &b); secp256k1_scalar_add(&ctx->scalar_offset, &b, &diff); secp256k1_ge_set_gej(&ctx->ge_offset, &gb); /* Clean up. */ secp256k1_memclear(nonce32, sizeof(nonce32)); secp256k1_scalar_clear(&b); secp256k1_gej_clear(&gb); secp256k1_fe_clear(&f); secp256k1_rfc6979_hmac_sha256_clear(&rng); } #endif /* SECP256K1_ECMULT_GEN_IMPL_H */